
Improving Interobserver Reliability by

Artificial Intelligence Techniques in Behavioural Research

Arjen van Alphen
1
, Tibor Bosse

2
, Catholijn M. Jonker

3
, and Francien Koeman

1

1
 Dog Therapeutic Research Institute De Roedel

Chemin de la Bosette 7, 6690 Salmchateau, Belgium

info@deroedel.com

2
Vrije Universiteit Amsterdam, Department of Artificial Intelligence

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

tbosse@few.vu.nl

3
 Man-Machine Interaction Department, Fac. EEMCS, Delft University of Technology

Mekelweg 4, 2628 CD Delft, The Netherlands

c.m.jonker@tudelft.nl

Abstract

Interobserver reliability and reproducibility are

well known problems in experimental research within

the social and behavioural sciences. We propose the

use of formal techniques and tools to reduce this

problem. To this end we extend standard research

methods by transcribing video material in terms of

basic score units, using automated tools to define in

logic the more complex score units in terms of the

basic score units, and to automatically check these

complex score units against the transcripts.

Furthermore, we use pilot experiments to determine

the basic score units. We show that the proposed

extension significantly improves interobserver

reliability and reproducibility. An important additional

benefit of our method is that the repository of

annotations remains useful even if the researcher

decides to test other complex score units that can be

formulated in terms of the basic score units used to

annotate the collected data.

1. Introduction

Within the social and behavioural sciences,

reliability is a necessary but insufficient condition for

validity [2]. This article focuses on interobserver

reliability, which measures agreement between two or

more subjects rating the same object, phenomenon, or

concept, see e.g., [4, 7, 11]. Both random factors (e.g.,

the view is blocked, errors in coding) and systematic

factors can cause lower interobserver reliability

estimates. There might be many systematic factors that

contribute to a low reliability, consider for example

that the observers follow the protocol in different ways,

or that the observers lack agreement on the criteria for

a response. The last category can, for example, result in

one observer consistently coding more of the behavior

than a second observer. However, different observers

might also have different understanding of the scoring

unit itself. In our opinion, the standard methods for

analyzing interobserver reliability do not pay enough

attention to this last category. When analyzing this

reliability the choice of observers is not challenged.

That contrasts with remarks as made in [4], p.103: “But

the principal concern of many researchers is the

reliability of their basic data-acquisition system-a

human observer-recorder.” The literature then typically

proceeds by showing how to determine the degree of

interobserver reliability for two observers, not more.

Another problem that is not raised in the text book

discussions on observer reliability is the reproducibility

of research in relation to reliability. However, some

case studies exist. For example, Malek et al., [5]

determined 5-observer reliability based on the

proportion of agreement and the values of the kappa

coefficient. Myllyluoma and Duck [8] determined

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.44

523

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.44

523

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.44

523

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.44

523

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.44

523

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.44

523

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.44

523

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.44

523

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.44

523

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.44

523

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.44

523

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.44

523

inter-observer correspondence using correlation and

intra-class correlation (ICC) analyses. In this article we

propose an adaptation of the standard methods in the

following sense.

• Testing interobserver reliability in the pilot. Before

starting the annotations, do an experiment to check the

variability with respect to the behaviours you would

like people to score. If variability is low, the behaviour

is "easy" to score. We call such behaviours basic. If

variability is high, this is a complex behaviour. High

variability inhibits reproducibility.

• Splitting up complex behaviours into basic score

units. Complex behaviours have to be formulated in

terms of basic behaviours. Interobserver reliability has

to be determined for new basic behaviours.

• Formalizing behaviours. When interobserver

reliability is high for all basic score units, and all

complex behaviours have been formulated in terms of

basic score units, both complex and basic behaviours

have to represented in a formal language.

• Experimentation and scoring. After all the above

preparations have been completed, the real experiment

can be held. The observers only score basic behaviours.

• Computer Tools Check Complex Behaviours. After

scoring the basic behaviours, the computer takes the

formal definitions of the complex behaviours and

checks those against the annotated data.

We claim that as a result the variability with respect

to complex behaviours is low, as that depends only on

the variability in basic behaviours. The computer does

not add variability for the computation of the complex

behaviours. Furthermore, if the researchers would want

to check other complex behaviours, then as long as

those behaviours are defined in terms of the basic score

units, the checking can be done automatically, nobody

has to return to the tapes. A case study
1
 in dog

behaviour shows the effectiveness of our method.

2. A Case Study: Dog Behaviour

In our case study (see [1]), dogs were presented with

a search task in a testing arena of 5 by 10 meters, see

Figure 1. Their task was to locate a goody (a smelly

type of sausage dogs like) that was hidden underneath

one of three cones. An experimenter presented the

goody to the dog before hiding it. A blindfold kept the

dogs from seeing where the goody is placed. The wind

always carried the smell of the goody towards the

baseline. The dog departs from the flag.

The hypothesis was that paw preference correlates

to task performance. Paw preference refers to which

1 Note that the presented case study is just an illustration: the

approach is sufficiently generic to be applied in other domains in

social science.

front paw the dog uses first when departing to locate

the goody. Good performance was defined informally

by dog experts as “going in a near straight line to the

goody pylon or taking the shortest route to the

experimenter who presented the goody to the dog

before hiding it under the goody pylon.”

Figure 1. Setup of the experiment

3. Inter-Observer Reliability in Pilot Tests

From a first pilot experiment it proved difficult for

human observers to establish whether or not the dog

gave a good performance. To test the complexity of the

“good performance” score unit that was intended to

result in categorical data (bad vs good performance),

we first conducted an experiment with 30 participants.

We gave the participants the following definition of

“good performance”: the dog travels in a nearly straight

line towards the middle dot. We then presented Figure

2 and asked in each group, who would consider A to

show good performance, then the same for B, and then

the same for C. The situations were chosen in such a

way that A was clearly not good, C was clearly good,

and, therefore, the real test concerned situation B,

which is of much more interest than situation C as the

last occurs rarely in practice. This resulted in an

accumulated total of A=0, B=13, and C=30.

To establish interobserver reliability we adapted and

then used the 2-observer proportion of agreement

measure, see [4]. The proportion of agreement

approach measures reliability by dividing the smaller of

the two scores obtained for a session by the larger, and

multiplying this ratio by 100, see e.g., [4]. For our

multi-observer problem, we used the following

formula’s:

 pa(i) = (N – min_c(i)(score(c(i))))/N% (1)

 ior = sum_i(pa(i))/n (2)

Starting position of the handler
with the dog on his left

 The goody is underneath
 one of the cones

Camera

524524524524524524524524524524524524

where pa(i) stands for proportion of agreement of trial

i, c ranges over the possible categories for trial i,

score(c(i)) is the number of participants that used score

trial i as belonging to category c, ior stands for the

measure of interobserver reliability, and n stands for

the number of trials. For the pilot this resulted in

pa(A)=100%, pa(B)=57%, and pa(C)=100%. It made

no sense to compute ior for these three trials, as trial B

stood for the largest category of expected dog routes.

In that sense trial B can be seen as an experiment by

itself, with null-hypothesis that human observers would

score B according to a normal distribution. The usual

Chi-squared test for such situations clearly indicates

that a score of 13 out of 30 is not enough to reject the

null-hypothesis (χ
2
=0.533, p<0.465). Hence, human

judgment is not reliable with respect to score B, in fact

human observers score B almost randomly.

Figure 2. Pilot experiment

On the basis of these results, it was decided to find a

more basic behaviour to score, upon which “good

performance” could be defined. Although the property

“good performance” is actually rather more complex,

for the purpose of this paper, it suffices to say that we

decided to test whether humans could reliably annotate

the dog’s route with directions according to the clock

handles. After that for each of the situations in Figure 2

the same individuals of the pilot were asked to annotate

the route the dogs with hours on the clock

corresponding to the labeling of the example in Figure

3. Then we let the computer calculate “bad” or “good”

performance per observer per trial. The results of this

pilot experiment 2 were as follows: A=0, B=1, C=30.

For which we calculated pa(A)=100% , pa(B)= 97%,

and pa(C)= 100%. Here, obviously, also the

interpersonal difference in judgment for score B (29 vs.

1) is significant (χ
2
=26.133, p<0.001). Hence, that by

letting the subjects annotate routes instead of the more

complex behaviour of “good performance”, the

interobserver reliability went up from 57% to 97%.

The next part of the article concerns the use of tools

and techniques to formally define basic and complex

behaviours, The research assistants were given the

formal definitions and asked to perform and annotate

the real experiment. Of course interobserver reliability

(for the 6 observers) was checked again.

The rest of this section is organized as follows.

After the presentation of the formal language and

definitions, the process of annotation and using an

automated tool to check the complex behaviours

against basic score units is explained.

Figure 3. The example for directions

3.1 Identifying/Formalising Basic Behaviours

To formalise basic behaviours, first a formal

ontology has to be created, by eliciting and formally

representing domain knowledge. For the dog case study

(in the context of the experiments of [1]), this was done

after various discussions with domain experts, and

using XML. In order to work with XML annotated

files, a DTD (Document Type Definition) file must be

generated in order the markup syntax of the XML file.

The DTD file for the case study serves to illustrate

important concepts for annotating behaviour:

<?xml version="1.0" encoding="UTF-8" ?>

<!ELEMENT transcript (data, general_circumstances, exercises)>

<!ELEMENT data (dog_number, name, breed, gender, age, castration,
training*)>

<!ELEMENT dog_number (#CDATA)>
<!ELEMENT name (#CDATA)>
<!ELEMENT breed (#CDATA)>
<!ELEMENT gender (#CDATA)>

<!ELEMENT age (#CDATA)>
 <!ATTLIST age years CDATA #REQUIRED>
 <!ATTLIST age months CDATA #REQUIRED>
<!ELEMENT castration (#CDATA)>
<!ELEMENT training (#CDATA)>
 <!ATTLIST training arg1 CDATA #IMPLIED>

<!ELEMENT general_circumstances (date, area, surface, weather,

disturbing_object*)>
<!ELEMENT date (#CDATA)>
 <!ATTLIST date year CDATA #REQUIRED>
 <!ATTLIST date month CDATA #REQUIRED>
 <!ATTLIST date day CDATA #REQUIRED>

<!ELEMENT area (#CDATA)>
<!ELEMENT surface (#CDATA)>

525525525525525525525525525525525525

<!ELEMENT weather (temperature, wind_force, wind_direction, sun,
precipitation)>

<!ELEMENT temperature (#CDATA)>
<!ELEMENT wind_force (#CDATA)>
<!ELEMENT wind_direction (#CDATA)>
<!ELEMENT sun (#CDATA)>

<!ELEMENT precipitation (#CDATA)>
 <!ATTLIST precipitation arg1 CDATA #IMPLIED>
<!ELEMENT disturbing_object (#CDATA)>
<!ELEMENT disturbing_noise (#CDATA)>
<!ELEMENT disturbing_smell (#CDATA)>
<!ELEMENT other_disturbance (#CDATA)>

<!ELEMENT exercises (exercise*)>
<!ELEMENT exercise (times*, comment*, exercise_content?)>
 <!ATTLIST exercise type (a | b | c | d | e) #REQUIRED>
 <!ATTLIST exercise trial (1 | 2 | 3 | 4) #REQUIRED>
 <!ATTLIST exercise index (i | ii | iii | iv | v | vi | rr1 | rr2 | rl1 | rl2 | ll1 | ll2 |

lr1 | lr2) #REQUIRED>

<!ELEMENT times (starts, ends, on)>
<!ELEMENT starts (#CDATA)>
 <!ATTLIST starts min CDATA #REQUIRED>
 <!ATTLIST starts sec CDATA #REQUIRED>
<!ELEMENT ends (#CDATA)>

 <!ATTLIST ends min CDATA #REQUIRED>
 <!ATTLIST ends sec CDATA #REQUIRED>
<!ELEMENT on (#CDATA)>
 <!ATTLIST on cam CDATA #REQUIRED>

<!ELEMENT comment (#CDATA)>

<!ELEMENT exercise_content (atomic | sequential | parallel | comment)>
<!ELEMENT sequential (atomic | sequential | parallel | comment)+>
<!ELEMENT parallel (atomic | sequential | parallel | comment)+>
<!ELEMENT atomic (#CDATA)>
 <!ATTLIST atomic arg1 CDATA #IMPLIED>
 <!ATTLIST atomic arg2 CDATA #IMPLIED>

 <!ATTLIST atomic arg3 CDATA #IMPLIED>

The lines starting with ELEMENT indicate the names

of elements that may be used within the XML file, and

(between round brackets) the sub-elements that an

instance of such an element should contain. For

example, the first line indicates that a transcript

consists of data, general circumstances, and exercises.

More specifically, data (see next 8 ELEMENT lines)

consist of demographical information about the

participants (in this case the dogs), such as their

number (used as a unique identifier), name, breed, and

so on. The * indicates that there can be 0 or more

training elements within the data element (a dog may

have followed multiple types of training), and CDATA

indicates that an instance of an element contains

“character data” (i.e., any arbitrary combination of

characters). Furthermore, an element may have

additional information (“attributes”), indicated by

!ATTLIST. For example, age is defined in terms of years

and months. Here, #REQUIRED and #IMPLIED specify

whether the attribute is mandatory or optional.

The next set of lines specifies that

general_circumstances consist of background information

about the experiment, such as the date and the weather.

Finally, the exercises consist of 0 or more individual

exercises, where an individual exercise element is

composed of 0 or more times and comment elements,

and 0 or 1 (indicated by the ?) exercise_content

elements. An exercise also has some attributes to

identify the type, trial, and index (i.e., part) of the

exercise (where the names separated by the OR-

operator | indicate the allowed values). Via times the

experimenter can indicate to which times on which

camera the part of the transcript corresponds, and

comment can be used to specify relevant additional

information, such as “part on camera missing”. An

exercise_content is a nested structure composed of

atomic, sequential, and/or parallel events, and

comments (where the + operator indicates ‘1 or more’).

Examples of the specific atomic events allowed in our

case study are notions like dog_moves_paw, dog_sits, and

handler_walks (see the previous section).

3.2 Transcribing Video Material

Based on the ontology introduced in the previous

section, observers were asked to transcribe the video

material. A partial example is shown below:

<exercise_content>
<sequential>
<atomic arg1="handler" arg2="search_forward">commands</atomic>
<atomic arg1="left" arg2="forward">dog_moves_paw</atomic>

<atomic arg1="12" arg2="left" arg3="gallop">dog_moves_to</atomic>
<atomic arg1="down">dog_head_tilt</atomic>
<atomic arg1="1" arg2="2">dog_enters_alley_between</atomic>
<atomic arg1=“high">dog_tail_stance</atomic>
<atomic arg1="frequent">dog_wags_tail</atomic>
<atomic arg1="dog" arg2="inside">position_from_alley</atomic>

<atomic arg1="dog" arg2="12">goes_to_pylon</atomic>
<atomic arg1="12">dog_sniffs_at_pylon</atomic>
<atomic arg1="11" arg2="12">dog_leaves_alley_between</atomic>
<atomic arg1="dog" arg2="right">goes_to_pylon</atomic>
<atomic arg1="right">dog_sniffs_at_pylon</atomic>
<atomic arg1="dog" arg2="right">turns_around_pylon</atomic>
<atomic arg1="right" arg2="paw">dog_tilts_pylon_with</atomic>

<atomic arg1="right">dog_looks_inside_pylon</atomic>
<atomic arg1="towards_handler">dog_head_pointed</atomic>
<atomic arg1="11">dog_moves_to</atomic>
<atomic arg1="dog" arg2="left">goes_to_pylon</atomic>
<atomic arg1="dog" arg2="left">turns_around_pylon</atomic>
<atomic arg1="dog" arg2="goody_pylon">goes_to_pylon</atomic>

<atomic arg1="goody_pylon"
arg2="head">dog_tilts_pylon_with</atomic>

<atomic arg1="goody_pylon">dog_sniffs_at_pylon</atomic>
<atomic arg1="goody_pylon"

arg2="head">dog_tilts_pylon_with</atomic>
<atomic arg1="goody">dog_eats</atomic>

</sequential>
</exercise_content>

For more information about transcribing and the dog

experiments, see [1] and the project’s website [12].

3.3 Converting Transcripts into Traces

As a next step, transcripts can be analysed in more

detail by converting them into formally specified traces

(i.e., sequences of events over time, cf. [3]), and

526526526526526526526526526526526526

checking relevant properties, expressed in the form of

temporal logical expressions, against these traces. To

convert transcripts into traces, we have written a

special piece of software in Prolog. This tool (which is

available at [12]) takes a transcript (written in XML)

and the corresponding DTD file as input, parses all the

events that are described within the transcript, assigns

appropriate time intervals to them, and stores the result

as a trace. The algorithm used for this simply parses the

file from start to end, checks for each line which type

of element it represents (e.g., general_circumstances or

exercise_content), and converts this to the appropriate

syntax using the appropriate Prolog module. For each

atomic event, a time step of 10 is taken. The syntax of

(an example of) a resulting trace is shown below:

atom_trace(dog_number(34), dog_number(34), [range(0, 890, true)]).
atom_trace(dog_moves_to(3,trot), dog_moves_to(3,trot), [range(810,

820, true), range(710, 720, true), range(650, 670, true), range(360,
370, true), range(340, 350, true), range(80, 120, true)]).

atom_trace(dog_moves_to(1,trot), dog_moves_to(1,trot), [range(120,
140, true)]).

atom_trace(dog_moves_to(7,trot), dog_moves_to(7,trot), [range(240,

270, true), range(140, 150, true)]).
atom_trace(dog_moves_to(12,trot), dog_moves_to(12,trot), [range(730,

760, true), range(620, 640, true), range(370, 390, true), range(280,
330, true), range(200, 240, true), range(170, 200, true), range(150,
170, true)]).

atom_trace(dog_moves_to(6,trot), dog_moves_to(6,trot), [range(850,

870, true), range(720, 730, true), range(680, 700, true), range(270,
280, true)]).

atom_trace(dog_moves_to(5,trot), dog_moves_to(5,trot), [range(330,
340, true)]).

atom_trace(dog_moves_to(9,trot), dog_moves_to(9,trot), [range(820,
850, true), range(790, 800, true), range(700, 710, true), range(350,

360, true)]).
atom_trace(dog_moves_to(10,trot), dog_moves_to(10,trot), [range(640,

650, true)]).
atom_trace(exercise(c,1), exercise(c,1), [range(0, 410, true)]).
atom_trace(exercise(c,2), exercise(c,2), [range(410, 470, true)]).
atom_trace(exercise(c,3), exercise(c,3), [range(470, 890, true)]).

Figure 4. Trace visualisation tool

A trace consists of a number of different state

properties (i.e., states of the world, indicated by the

atom_trace lines), with corresponding time intervals.

State properties may represent exercises (e.g.,

exercise(a,1,rr1)) or events (e.g., dog_moves_paw(right,

forward)). For example, the first line indicates that part

‘rr1’ of exercise A1 lasts from time point 0 to 60.

A graphical user interface [3] visualizes the traces.

Figure 4, shows a visualisation of the trace above. In

such pictures, time is on the horizontal axis, and the

different atoms are on the vertical axis. Blue boxes on

top of a line indicate when the atom is true.

3.4 Defining Complex Behaviours in TTL

In order to express properties about complex

behaviours in a formal manner, the Temporal Trace

Language (TTL) is proposed [3]. This predicate logical

language supports formal specification and analysis of

dynamic properties, covering both qualitative and

quantitative aspects. TTL is built on atoms referring to

states of the world, time points and traces, i.e.

trajectories of states over time. In addition, dynamic

properties are temporal statements that can be

formulated with respect to traces based on the state

ontology Ont in the following manner. Given a trace γ

over state ontology Ont, the state in γ at time point t is

denoted by state(γ, t). These states can be related to state

properties via the formally defined satisfaction relation

denoted by the infix predicate |=, comparable to the

Holds-predicate in the Situation Calculus: state(γ, t) |= p

denotes that state property p holds in trace γ at time t.

Based on these statements, dynamic properties can be

formulated in a formal manner in a sorted first-order

predicate logic, using quantifiers over time and traces

and the usual first-order logical connectives such as ¬,

∧, ∨, ⇒, ∀, ∃.

An example of a dynamic property about dog

behaviour would be the following:

for all traces,

if exercise B1-vi lasts from time point tb to te

and at time point t within this exercise,

 the first step of the handler is a step forward with the left leg,

and at time point t2 within this exercise

 the second step of the handler begins,

then there is a time point t1 between t and t2 at which the dog moves

Within TTL, this property is formalised as follows:

P1 ≡ ∀γ:TRACE tb,te,t,t2:TIME
tb ≤ t < t2 ≤ te &

[[trace_part_of_interest(γ, exercise(b, 1, vi), tb, te)] &
[first_step_of_handler_left_forward(γ, t, tb, te)] &

[second_step_begins(γ, t2, t, te)]]

⇒ ∃t1 :TIME [t ≤ t1 < t2 & dog_movement(γ, t1, t2)]

3.5 Checking Complex Behaviours on Traces

To enable the automated verification of dynamic

properties specified in TTL against formal traces, a

527527527527527527527527527527527527

dedicated tool has been developed. This tool (called

the TTL Checker Tool) takes a dynamic property and

one or more formal traces as input, and checks whether

the dynamic property holds for the traces. Note that

these checks can be performed irrespectively of who or

what produced the formal traces: humans (or animals),

simulators or an implemented (prototype) system.

Thus, the TTL Checker Tool can be used to verify

properties of both empirical traces, simulated traces

and execution traces.

The Checker was implemented in Prolog, and offers

a user-friendly graphical editor to create and edit

dynamic properties based on tree structures (by means

of graphical manipulation and filling in slots, see

Figure 5) and the (earlier mentioned) graphical user

interface to visualise traces (using XPCE, see Figure

4). A query to check some TTL formula against all

loaded traces is compiled into a Prolog clause.

Compilation is obtained by mapping conjunctions,

disjunctions and negations of TTL formulae to their

Prolog equivalents, and by transforming universal

quantification into existential quantification.

Thereafter, if this Prolog clause succeeds, the

corresponding TTL formula holds with respect to all

traces under consideration.

Since it does not ‘exhaustively’ check all possible

traces (as e.g. in model checking), the complexity of

the checking algorithm is relatively low. It has an upper

bound in the order of the product of the sizes of the

ranges of all quantified variables. However, a number

of specific optimisations make it possible to check

realistic dynamic properties with reasonable

performance. In practice, the duration of such checks

usually varies from one second to a couple of minutes,

depending on the complexity of the formula and the

traces under consideration. With the increase of the

number of traces, the checking time grows linearly.

However, it is polynomial in the number of isolated

time range variables occurring in the formula under

analysis. For more (quantitative) details about the

complexity of the checking algorithm, see [3].

The possibility to express dynamic properties in

TTL and automatically check them against traces

enables the user to formulate complex hypotheses on

behaviour (and re-use them). Within a couple of

minutes, such hypotheses can be tested against

hundreds of traces without having to consider the tapes

again. Moreover, when a property fails, the software

indicates the cause of the failure, i.e. it pinpoints the

exact time point(s) in the traces (and, if necessary, the

specific variable instantiations) for which the TTL

expression is false. This enables the analyst to inspect

that particular part of the trace in more detail by hand.

Figure 5. TTL property editor and checker tool

528528528528528528528528528528528528

4. Related Work and Conclusions

In experimental research within the social and

behavioural sciences, interobserver variability is a

known problem. In our research on dog behaviour [1]

we see the same phenomenon among the people that

help us observe and annotate the videotapes.

In this paper, we propose to reduce interpersonal

variability and in the meantime improve reliability and

reproducibility by using (novel) formal techniques.

According to the proposed methodology, first the

variability with respect to behaviours to be annotated

has to be checked in an experiment. For each

behaviour, there are two possibilities: basic behaviour

(i.e., variability is low and apparently "easy" to

observe) and complex behaviour (i.e., variability is

high, so more difficult to observe). Complex

behaviours then have to be formulated in terms of basic

behaviours. Thus, only basic behaviours are to be

annotated by the observers. Next, the computer takes

the formal definition of complex behaviours and checks

whether they hold for the annotated tapes.

The methodology has been illustrated using a case

study in dog behaviour. For the example explained in

this paper, the complex behaviour is "performance",

whereas the basic behaviour is "direction". It was

shown that the variability with respect to basic

behaviours was high (e.g., 13 out of 30 people

characterised a particular case as "good performance",

whilst the other 17 characterised it as "bad

performance". However, after having the persons

define basic behaviour and using these to have the

computer judge the performance, only 1 out of 30

participants still characterised the case as "good

performance". Thus, the variability with respect to

complex behaviours is low, as it depends only on the

variability in basic behaviours. The computer does not

add variability for the computation of the complex

behaviours, which makes it more objective.

In addition, an important use of formal techniques is

that researchers later can automatically check other

complex behaviours, as long as those behaviours are

defined in terms of the basic behaviours already

annotated, without anyone having to return to the tapes.

During the case study, the annotation of the tapes

has been performed by 6 people, most of which had no

background in Artificial Intelligence. Nevertheless,

they experienced no problems in working with the

formal ontology. The formalisation of the dynamic

properties in TTL has been performed by people with a

background in Artificial Intelligence, in close

collaboration with domain experts.

Concerning related work: we found two papers that

also present dedicated tools (other than statistical tools)

for automated support in behavioural research [9, 10].

These papers describe a framework that provides

support in annotating video material and analysing

behavioural data. The current paper elaborates upon

these approaches by extending them with a tool to

automatically verify complex behaviours in terms of

basic behaviours.

5. Acknowledgement

Thanks to W. Akkerman, research assistant, for

helping to transcribe videos and to De Jonge Akademie

of the KNAW for partially funding the work.

6. References

[1] Alphen, A. van, Bosse, T., Frank, I., Jonker, C.M., and
Koeman, F., (2005). Paw preference correlates to task performance
in dogs. In: Proceedings of the 27th Annual Conference of the

Cognitive Science Society, CogSci'05, Lawrence Erlbaum Associates
Inc., pp. 2248 – 2253.

[2] Bickman, L., (2000). Validity & social experimentation.
Donald Campbell’s Legacy, Volume 1. Sage Publications, Thousand
Oaks, CA.

[3] Bosse, T., Jonker, C.M., Meij, L. van der, Sharpanskykh, A., &
Treur, J. (2009). Specification and verification of dynamics in agent
models. Int. Journal of Cooperative Information Systems. vol. 18,
pp. 167 - 193.

[4] Hartmann, D.P., (1977). Considerations in the choice of
interobserver reliability estimates. In: J Appl Behav Anal.; 10(1):
103–116.

[5] Malek, I.A., Machani, B., Mevcha, A. M., and Hyder, N. H.
(2006). Inter-observer reliability and intra-observer reproducibility
of the Weber classification of ankle fractures. In: J Bone Joint Surg

Br; 88-B: 1204 - 1206.

[6] Martin, P., and Bateson, P., (1993). Measuring Behaviour – An

introductory guide, 2nd edition, Cambridge Univ. Press.

[7] Messick, S. (1989). Validity. In R. L. Linn (Ed.). Educational

Measurement. 3rd Edition. New York: Macmillan, pp. 13-104.

[8] Myllyluoma, J. and Buck, D. (2008). "Measuring quality in
observational data collection" Paper presented at the annual meeting
of the American Association For Public Opinion Association,
Fontainebleau Resort. Available at URL:
http://www.allacademic.com/meta/p17012_index.html.

[9] Noldus, L.P.J.J. (1991). The observer: a software system for
collection and analysis of observational data. In: Behavior research

methods, instruments & computers, vol. 23, no3, pp. 415-429.

[10] Noldus, L.P.J.J., Spink, A.J., and Tegelenbosch, R.A.J. (2002).
Computerized video tracking, movement analysis and behaviour
recognition in insects. Comput Electr Agric 35:201-227.

[11] Wiggins, J. (1973). Personality and prediction: principles of
personality assessment. Reading, Mass.: Addison-Wesley.

[12] http://mmi.tudelft.nl/dog-cognition/

529529529529529529529529529529529529

