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Abstract 
 

Interobserver reliability and reproducibility are 

well known problems in experimental research within 

the social and behavioural sciences. We propose the 

use of formal techniques and tools to reduce this 

problem. To this end we extend standard research 

methods by transcribing video material in terms of 

basic score units, using automated tools to define in 

logic the more complex score units in terms of the 

basic score units, and to automatically check these 

complex score units against the transcripts. 

Furthermore, we use pilot experiments to determine 

the basic score units. We show that the proposed 

extension significantly improves interobserver 

reliability and reproducibility. An important additional 

benefit of our method is that the repository of 

annotations remains useful even if the researcher 

decides to test other complex score units that can be 

formulated in terms of the basic score units used to 

annotate the collected data. 

 

1. Introduction 
 

Within the social and behavioural sciences, 

reliability is a necessary but insufficient condition for 

validity [2]. This article focuses on interobserver 

reliability, which measures agreement between two or 

more subjects rating the same object, phenomenon, or 

concept, see e.g., [4, 7, 11]. Both random factors (e.g., 

the view is blocked, errors in coding) and systematic 

factors can cause lower interobserver reliability 

estimates. There might be many systematic factors that 

contribute to a low reliability, consider for example 

that the observers follow the protocol in different ways, 

or that the observers lack agreement on the criteria for 

a response. The last category can, for example, result in 

one observer consistently coding more of the behavior 

than a second observer. However, different observers 

might also have different understanding of the scoring 

unit itself. In our opinion, the standard methods for 

analyzing interobserver reliability do not pay enough 

attention to this last category. When analyzing this 

reliability the choice of observers is not challenged. 

That contrasts with remarks as made in [4], p.103: “But 

the principal concern of many researchers is the 

reliability of their basic data-acquisition system-a 

human observer-recorder.” The literature then typically 

proceeds by showing how to determine the degree of 

interobserver reliability for two observers, not more. 

Another problem that is not raised in the text book 

discussions on observer reliability is the reproducibility 

of research in relation to reliability. However, some 

case studies exist. For example, Malek et al., [5] 

determined 5-observer reliability based on the 

proportion of agreement and the values of the kappa 

coefficient. Myllyluoma and Duck [8] determined 
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inter-observer correspondence using correlation and 

intra-class correlation (ICC) analyses. In this article we 

propose an adaptation of the standard methods in the 

following sense. 
 

• Testing interobserver reliability in the pilot. Before 

starting the annotations, do an experiment to check the 

variability with respect to the behaviours you would 

like people to score. If variability is low, the behaviour 

is "easy" to score. We call such behaviours basic. If 

variability is high, this is a complex behaviour. High 

variability inhibits reproducibility.  

• Splitting up complex behaviours into basic score 

units. Complex behaviours have to be formulated in 

terms of basic behaviours. Interobserver reliability has 

to be determined for new basic behaviours.  

• Formalizing behaviours. When interobserver 

reliability is high for all basic score units, and all 

complex behaviours have been formulated in terms of 

basic score units, both complex and basic behaviours 

have to represented in a formal language.  

• Experimentation and scoring. After all the above 

preparations have been completed, the real experiment 

can be held. The observers only score basic behaviours.  

• Computer Tools Check Complex Behaviours. After 

scoring the basic behaviours, the computer takes the 

formal definitions of the complex behaviours and 

checks those against the annotated data.  
 

We claim that as a result the variability with respect 

to complex behaviours is low, as that depends only on 

the variability in basic behaviours. The computer does 

not add variability for the computation of the complex 

behaviours. Furthermore, if the researchers would want 

to check other complex behaviours, then as long as 

those behaviours are defined in terms of the basic score 

units, the checking can be done automatically, nobody 

has to return to the tapes. A case study
1
 in dog 

behaviour shows the effectiveness of our method. 

 

2. A Case Study: Dog Behaviour 
 

In our case study (see [1]), dogs were presented with 

a search task in a testing arena of 5 by 10 meters, see 

Figure 1. Their task was to locate a goody (a smelly 

type of sausage dogs like) that was hidden underneath 

one of three cones. An experimenter presented the 

goody to the dog before hiding it. A blindfold kept the 

dogs from seeing where the goody is placed. The wind 

always carried the smell of the goody towards the 

baseline. The dog departs from the flag. 

The hypothesis was that paw preference correlates 

to task performance. Paw preference refers to which 

                                                           
1 Note that the presented case study is just an illustration: the 

approach is sufficiently generic to be applied in other domains in 

social science. 

front paw the dog uses first when departing to locate 

the goody. Good performance was defined informally 

by dog experts as “going in a near straight line to the 

goody pylon or taking the shortest route to the 

experimenter who presented the goody to the dog 

before hiding it under the goody pylon.” 

 

 
 
 

 
 
 

 
 
 

 
 

 
 
 

Figure 1. Setup of the experiment 
 

3. Inter-Observer Reliability in Pilot Tests 
 

From a first pilot experiment it proved difficult for 

human observers to establish whether or not the dog 

gave a good performance. To test the complexity of the 

“good performance” score unit that was intended to 

result in categorical data (bad vs good performance), 

we first conducted an experiment with 30 participants. 

We gave the participants the following definition of 

“good performance”: the dog travels in a nearly straight 

line towards the middle dot. We then presented Figure 

2 and asked in each group, who would consider A to 

show good performance, then the same for B, and then 

the same for C. The situations were chosen in such a 

way that A was clearly not good, C was clearly good, 

and, therefore, the real test concerned situation B, 

which is of much more interest than situation C as the 

last occurs rarely in practice. This resulted in an 

accumulated total of A=0, B=13, and C=30. 

To establish interobserver reliability we adapted and 

then used the 2-observer proportion of agreement 

measure, see [4]. The proportion of agreement 

approach measures reliability by dividing the smaller of 

the two scores obtained for a session by the larger, and 

multiplying this ratio by 100, see e.g., [4]. For our 

multi-observer problem, we used the following 

formula’s: 

 pa(i) = (N – min_c(i)(score(c(i))) )/N% (1) 

 ior = sum_i(pa(i))/n (2) 

Starting position of the handler  
with the dog on his left  

  The goody is underneath  
  one of the cones 

Camera 
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where pa(i) stands for proportion of agreement of trial 

i, c ranges over the possible categories for trial i, 

score(c(i)) is the number of participants that used score 

trial i  as belonging to category c, ior stands for the 

measure of interobserver reliability, and n stands for 

the number of trials. For the pilot this resulted in 

pa(A)=100%, pa(B)=57%, and pa(C)=100%. It made 

no sense to compute ior for these three trials, as trial B 

stood for the largest category of expected dog routes. 

In that sense trial B can be seen as an experiment by 

itself, with null-hypothesis that human observers would 

score B according to a normal distribution. The usual 

Chi-squared test for such situations clearly indicates 

that a score of 13 out of 30 is not enough to reject the 

null-hypothesis (χ
2
=0.533, p<0.465). Hence, human 

judgment is not reliable with respect to score B, in fact 

human observers score B almost randomly. 

 

 
 

Figure 2. Pilot experiment 
 

On the basis of these results, it was decided to find a 

more basic behaviour to score, upon which “good 

performance” could be defined. Although the property 

“good performance” is actually rather more complex, 

for the purpose of this paper, it suffices to say that we 

decided to test whether humans could reliably annotate 

the dog’s route with directions according to the clock 

handles. After that for each of the situations in Figure 2 

the same individuals of the pilot were asked to annotate 

the route the dogs with hours on the clock 

corresponding to the labeling of the example in Figure 

3. Then we let the computer calculate “bad” or “good” 

performance per observer per trial. The results of this 

pilot experiment 2 were as follows: A=0, B=1, C=30. 

For which we calculated pa(A)=100% , pa(B)= 97%, 

and pa(C)= 100%. Here, obviously, also the 

interpersonal difference in judgment for score B (29 vs. 

1) is significant (χ
2
=26.133, p<0.001). Hence, that by 

letting the subjects annotate routes instead of the more 

complex behaviour of “good performance”, the 

interobserver reliability went up from 57% to 97%. 

The next part of the article concerns the use of tools 

and techniques to formally define basic and complex 

behaviours, The research assistants were given the 

formal definitions and asked to perform and annotate 

the real experiment. Of course interobserver reliability 

(for the 6 observers) was checked again.  

The rest of this section is organized as follows. 

After the presentation of the formal language and 

definitions, the process of annotation and using an 

automated tool to check the complex behaviours 

against basic score units is explained. 

 

 
 

Figure 3. The example for directions 
 

3.1 Identifying/Formalising Basic Behaviours 
 

To formalise basic behaviours, first a formal 

ontology has to be created, by eliciting and formally 

representing domain knowledge. For the dog case study 

(in the context of the experiments of [1]), this was done 

after various discussions with domain experts, and 

using XML. In order to work with XML annotated 

files, a DTD (Document Type Definition) file must be 

generated in order the markup syntax of the XML file. 

The DTD file for the case study serves to illustrate 

important concepts for annotating behaviour: 
 
<?xml version="1.0" encoding="UTF-8" ?> 
 
<!ELEMENT transcript (data, general_circumstances, exercises)> 
 

<!ELEMENT data (dog_number, name, breed, gender, age, castration, 
training*)> 

<!ELEMENT dog_number (#CDATA)> 
<!ELEMENT name (#CDATA)> 
<!ELEMENT breed (#CDATA)> 
<!ELEMENT gender (#CDATA)> 

<!ELEMENT age (#CDATA)> 
  <!ATTLIST age years CDATA #REQUIRED> 
  <!ATTLIST age months CDATA #REQUIRED> 
<!ELEMENT castration (#CDATA)> 
<!ELEMENT training (#CDATA)> 
  <!ATTLIST training arg1 CDATA #IMPLIED> 

 
<!ELEMENT general_circumstances (date, area, surface, weather, 

disturbing_object*)> 
<!ELEMENT date (#CDATA)> 
  <!ATTLIST date year CDATA #REQUIRED> 
  <!ATTLIST date month CDATA #REQUIRED> 
  <!ATTLIST date day CDATA #REQUIRED> 

<!ELEMENT area (#CDATA)> 
<!ELEMENT surface (#CDATA)> 

525525525525525525525525525525525525



<!ELEMENT weather (temperature, wind_force, wind_direction, sun, 
precipitation)> 

<!ELEMENT temperature (#CDATA)> 
<!ELEMENT wind_force (#CDATA)> 
<!ELEMENT wind_direction (#CDATA)> 
<!ELEMENT sun (#CDATA)> 

<!ELEMENT precipitation (#CDATA)> 
   <!ATTLIST precipitation arg1 CDATA #IMPLIED> 
<!ELEMENT disturbing_object (#CDATA)> 
<!ELEMENT disturbing_noise (#CDATA)> 
<!ELEMENT disturbing_smell (#CDATA)> 
<!ELEMENT other_disturbance (#CDATA)> 
 

<!ELEMENT exercises (exercise*)> 
<!ELEMENT exercise (times*, comment*, exercise_content?)> 
  <!ATTLIST exercise type (a | b | c | d | e) #REQUIRED> 
  <!ATTLIST exercise trial (1 | 2 | 3 | 4) #REQUIRED> 
  <!ATTLIST exercise index (i | ii | iii | iv | v | vi | rr1 | rr2 | rl1 | rl2 | ll1 | ll2 | 

lr1 | lr2) #REQUIRED> 

 
<!ELEMENT times (starts, ends, on)> 
<!ELEMENT starts (#CDATA)> 
  <!ATTLIST starts min CDATA #REQUIRED> 
  <!ATTLIST starts sec CDATA #REQUIRED> 
<!ELEMENT ends (#CDATA)> 

  <!ATTLIST ends min CDATA #REQUIRED> 
  <!ATTLIST ends sec CDATA #REQUIRED> 
<!ELEMENT on (#CDATA)> 
  <!ATTLIST on cam CDATA #REQUIRED> 
 
<!ELEMENT comment (#CDATA)> 

 
<!ELEMENT exercise_content (atomic | sequential | parallel | comment)> 
<!ELEMENT sequential (atomic | sequential | parallel | comment)+> 
<!ELEMENT parallel (atomic | sequential | parallel | comment)+> 
<!ELEMENT atomic (#CDATA)> 
  <!ATTLIST atomic arg1 CDATA #IMPLIED> 
  <!ATTLIST atomic arg2 CDATA #IMPLIED> 

  <!ATTLIST atomic arg3 CDATA #IMPLIED> 

 
The lines starting with ELEMENT indicate the names 

of elements that may be used within the XML file, and 

(between round brackets) the sub-elements that an 

instance of such an element should contain. For 

example, the first line indicates that a transcript 

consists of data, general circumstances, and exercises. 

More specifically, data (see next 8 ELEMENT lines) 

consist of demographical information about the 

participants (in this case the dogs), such as their 

number (used as a unique identifier), name, breed, and 

so on. The * indicates that there can be 0 or more 

training elements within the data element (a dog may 

have followed multiple types of training), and CDATA 

indicates that an instance of an element contains 

“character data” (i.e., any arbitrary combination of 

characters). Furthermore, an element may have 

additional information (“attributes”), indicated by 

!ATTLIST. For example, age is defined in terms of years 

and months. Here, #REQUIRED and #IMPLIED specify 

whether the attribute is mandatory or optional. 

The next set of lines specifies that 

general_circumstances consist of background information 

about the experiment, such as the date and the weather. 

Finally, the exercises consist of 0 or more individual 

exercises, where an individual exercise element is 

composed of 0 or more times and comment elements, 

and 0 or 1 (indicated by the ?) exercise_content 

elements. An exercise also has some attributes to 

identify the type, trial, and index (i.e., part) of the 

exercise (where the names separated by the OR-

operator | indicate the allowed values). Via times the 

experimenter can indicate to which times on which 

camera the part of the transcript corresponds, and 

comment can be used to specify relevant additional 

information, such as “part on camera missing”. An 

exercise_content is a nested structure composed of 

atomic, sequential, and/or parallel events, and 

comments (where the + operator indicates ‘1 or more’). 

Examples of the specific atomic events allowed in our 

case study are notions like dog_moves_paw, dog_sits, and 

handler_walks (see the previous section). 

 

3.2 Transcribing Video Material 
 

Based on the ontology introduced in the previous 

section, observers were asked to transcribe the video 

material. A partial example is shown below: 
 
<exercise_content> 
<sequential> 
<atomic arg1="handler" arg2="search_forward">commands</atomic>  
<atomic arg1="left" arg2="forward">dog_moves_paw</atomic> 

<atomic arg1="12" arg2="left" arg3="gallop">dog_moves_to</atomic> 
<atomic arg1="down">dog_head_tilt</atomic>    
<atomic arg1="1" arg2="2">dog_enters_alley_between</atomic>  
<atomic arg1=“high">dog_tail_stance</atomic>   
<atomic arg1="frequent">dog_wags_tail</atomic> 
<atomic arg1="dog" arg2="inside">position_from_alley</atomic> 

<atomic arg1="dog" arg2="12">goes_to_pylon</atomic> 
<atomic arg1="12">dog_sniffs_at_pylon</atomic> 
<atomic arg1="11" arg2="12">dog_leaves_alley_between</atomic>   
<atomic arg1="dog" arg2="right">goes_to_pylon</atomic> 
<atomic arg1="right">dog_sniffs_at_pylon</atomic> 
<atomic arg1="dog" arg2="right">turns_around_pylon</atomic> 
<atomic arg1="right" arg2="paw">dog_tilts_pylon_with</atomic> 

<atomic arg1="right">dog_looks_inside_pylon</atomic> 
<atomic arg1="towards_handler">dog_head_pointed</atomic> 
<atomic arg1="11">dog_moves_to</atomic> 
<atomic arg1="dog" arg2="left">goes_to_pylon</atomic> 
<atomic arg1="dog" arg2="left">turns_around_pylon</atomic> 
<atomic arg1="dog" arg2="goody_pylon">goes_to_pylon</atomic> 

<atomic arg1="goody_pylon" 
arg2="head">dog_tilts_pylon_with</atomic> 

<atomic arg1="goody_pylon">dog_sniffs_at_pylon</atomic> 
<atomic arg1="goody_pylon" 

arg2="head">dog_tilts_pylon_with</atomic> 
<atomic arg1="goody">dog_eats</atomic>   

</sequential>  
</exercise_content> 
 

For more information about transcribing and the dog 

experiments, see [1] and the project’s website [12]. 

 

3.3 Converting Transcripts into Traces 
 

As a next step, transcripts can be analysed in more 

detail by converting them into formally specified traces 

(i.e., sequences of events over time, cf. [3]), and 
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checking relevant properties, expressed in the form of 

temporal logical expressions, against these traces. To 

convert transcripts into traces, we have written a 

special piece of software in Prolog. This tool (which is 

available at [12]) takes a transcript (written in XML) 

and the corresponding DTD file as input, parses all the 

events that are described within the transcript, assigns 

appropriate time intervals to them, and stores the result 

as a trace. The algorithm used for this simply parses the 

file from start to end, checks for each line which type 

of element it represents (e.g., general_circumstances or 

exercise_content), and converts this to the appropriate 

syntax using the appropriate Prolog module. For each 

atomic event, a time step of 10 is taken. The syntax of 

(an example of) a resulting trace is shown below: 
 

atom_trace(dog_number(34), dog_number(34), [range(0, 890, true)]). 
atom_trace(dog_moves_to(3,trot), dog_moves_to(3,trot), [range(810, 

820, true), range(710, 720, true), range(650, 670, true), range(360, 
370, true), range(340, 350, true), range(80, 120, true)]). 

atom_trace(dog_moves_to(1,trot), dog_moves_to(1,trot), [range(120, 
140, true)]). 

atom_trace(dog_moves_to(7,trot), dog_moves_to(7,trot), [range(240, 

270, true), range(140, 150, true)]). 
atom_trace(dog_moves_to(12,trot), dog_moves_to(12,trot), [range(730, 

760, true), range(620, 640, true), range(370, 390, true), range(280, 
330, true), range(200, 240, true), range(170, 200, true), range(150, 
170, true)]). 

atom_trace(dog_moves_to(6,trot), dog_moves_to(6,trot), [range(850, 

870, true), range(720, 730, true), range(680, 700, true), range(270, 
280, true)]). 

atom_trace(dog_moves_to(5,trot), dog_moves_to(5,trot), [range(330, 
340, true)]). 

atom_trace(dog_moves_to(9,trot), dog_moves_to(9,trot), [range(820, 
850, true), range(790, 800, true), range(700, 710, true), range(350, 

360, true)]). 
atom_trace(dog_moves_to(10,trot), dog_moves_to(10,trot), [range(640, 

650, true)]). 
atom_trace(exercise(c,1), exercise(c,1), [range(0, 410, true)]). 
atom_trace(exercise(c,2), exercise(c,2), [range(410, 470, true)]). 
atom_trace(exercise(c,3), exercise(c,3), [range(470, 890, true)]). 

 

 
 

Figure 4. Trace visualisation tool 
 

A trace consists of a number of different state 

properties (i.e., states of the world, indicated by the 

atom_trace lines), with corresponding time intervals. 

State properties may represent exercises (e.g., 

exercise(a,1,rr1)) or events (e.g., dog_moves_paw(right, 

forward)). For example, the first line indicates that part 

‘rr1’ of exercise A1 lasts from time point 0 to 60. 

A graphical user interface [3] visualizes the traces. 

Figure 4, shows a visualisation of the trace above. In 

such pictures, time is on the horizontal axis, and the 

different atoms are on the vertical axis. Blue boxes on 

top of a line indicate when the atom is true. 

 

3.4 Defining Complex Behaviours in TTL 
 

In order to express properties about complex 

behaviours in a formal manner, the Temporal Trace 

Language (TTL) is proposed [3]. This predicate logical 

language supports formal specification and analysis of 

dynamic properties, covering both qualitative and 

quantitative aspects. TTL is built on atoms referring to 

states of the world, time points and traces, i.e. 

trajectories of states over time. In addition, dynamic 

properties are temporal statements that can be 

formulated with respect to traces based on the state 

ontology Ont in the following manner. Given a trace γ 

over state ontology Ont, the state in γ at time point t is 

denoted by state(γ, t). These states can be related to state 

properties via the formally defined satisfaction relation 

denoted by the infix predicate |=, comparable to the 

Holds-predicate in the Situation Calculus: state(γ, t) |= p 

denotes that state property p holds in trace γ at time t. 

Based on these statements, dynamic properties can be 

formulated in a formal manner in a sorted first-order 

predicate logic, using quantifiers over time and traces 

and the usual first-order logical connectives such as ¬, 

∧, ∨, ⇒, ∀, ∃. 

An example of a dynamic property about dog 

behaviour would be the following: 
 

for all traces, 

if exercise B1-vi lasts from time point tb to te 

and at time point t within this exercise, 

    the first step of the handler is a step forward with the left leg, 

and at time point t2 within this exercise 

    the second step of the handler begins, 

then there is a time point t1 between t and t2 at which the dog moves 

 

Within TTL, this property is formalised as follows: 
 

P1 ≡ ∀γ:TRACE tb,te,t,t2:TIME 
tb ≤ t < t2 ≤ te & 

[[trace_part_of_interest(γ, exercise(b, 1, vi), tb, te)] &  
[first_step_of_handler_left_forward(γ, t, tb, te)] & 

[second_step_begins(γ, t2, t, te)]] 

⇒ ∃t1 :TIME [ t ≤ t1 < t2 & dog_movement(γ, t1, t2) ] 

 

3.5 Checking Complex Behaviours on Traces 
 

To enable the automated verification of dynamic 

properties specified in TTL against formal traces, a 
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dedicated tool has been developed. This tool (called 

the TTL Checker Tool) takes a dynamic property and 

one or more formal traces as input, and checks whether 

the dynamic property holds for the traces. Note that 

these checks can be performed irrespectively of who or 

what produced the formal traces: humans (or animals), 

simulators or an implemented (prototype) system. 

Thus, the TTL Checker Tool can be used to verify 

properties of both empirical traces, simulated traces 

and execution traces. 

The Checker was implemented in Prolog, and offers 

a user-friendly graphical editor to create and edit 

dynamic properties based on tree structures (by means 

of graphical manipulation and filling in slots, see 

Figure 5) and the (earlier mentioned) graphical user 

interface to visualise traces (using XPCE, see Figure 

4). A query to check some TTL formula against all 

loaded traces is compiled into a Prolog clause. 

Compilation is obtained by mapping conjunctions, 

disjunctions and negations of TTL formulae to their 

Prolog equivalents, and by transforming universal 

quantification into existential quantification. 

Thereafter, if this Prolog clause succeeds, the 

corresponding TTL formula holds with respect to all 

traces under consideration. 

Since it does not ‘exhaustively’ check all possible 

traces (as e.g. in model checking), the complexity of 

the checking algorithm is relatively low. It has an upper 

bound in the order of the product of the sizes of the 

ranges of all quantified variables. However, a number 

of specific optimisations make it possible to check 

realistic dynamic properties with reasonable 

performance. In practice, the duration of such checks 

usually varies from one second to a couple of minutes, 

depending on the complexity of the formula and the 

traces under consideration. With the increase of the 

number of traces, the checking time grows linearly. 

However, it is polynomial in the number of isolated 

time range variables occurring in the formula under 

analysis. For more (quantitative) details about the 

complexity of the checking algorithm, see [3]. 

The possibility to express dynamic properties in 

TTL and automatically check them against traces 

enables the user to formulate complex hypotheses on 

behaviour (and re-use them). Within a couple of 

minutes, such hypotheses can be tested against 

hundreds of traces without having to consider the tapes 

again. Moreover, when a property fails, the software 

indicates the cause of the failure, i.e. it pinpoints the 

exact time point(s) in the traces (and, if necessary, the 

specific variable instantiations) for which the TTL 

expression is false. This enables the analyst to inspect 

that particular part of the trace in more detail by hand. 

 

 

 
 

Figure 5. TTL property editor and checker tool 
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4. Related Work and Conclusions 
 

In experimental research within the social and 

behavioural sciences, interobserver variability is a 

known problem. In our research on dog behaviour [1] 

we see the same phenomenon among the people that 

help us observe and annotate the videotapes. 

In this paper, we propose to reduce interpersonal 

variability and in the meantime improve reliability and 

reproducibility by using (novel) formal techniques. 

According to the proposed methodology, first the 

variability with respect to behaviours to be annotated 

has to be checked in an experiment. For each 

behaviour, there are two possibilities: basic behaviour 

(i.e., variability is low and apparently "easy" to 

observe) and complex behaviour (i.e., variability is 

high, so more difficult to observe). Complex 

behaviours then have to be formulated in terms of basic 

behaviours. Thus, only basic behaviours are to be 

annotated by the observers. Next, the computer takes 

the formal definition of complex behaviours and checks 

whether they hold for the annotated tapes. 

The methodology has been illustrated using a case 

study in dog behaviour. For the example explained in 

this paper, the complex behaviour is "performance", 

whereas the basic behaviour is "direction". It was 

shown that the variability with respect to basic 

behaviours was high (e.g., 13 out of 30 people 

characterised a particular case as "good performance", 

whilst the other 17 characterised it as "bad 

performance". However, after having the persons 

define basic behaviour and using these to have the 

computer judge the performance, only 1 out of 30 

participants still characterised the case as "good 

performance". Thus, the variability with respect to 

complex behaviours is low, as it depends only on the 

variability in basic behaviours. The computer does not 

add variability for the computation of the complex 

behaviours, which makes it more objective. 

In addition, an important use of formal techniques is 

that researchers later can automatically check other 

complex behaviours, as long as those behaviours are 

defined in terms of the basic behaviours already 

annotated, without anyone having to return to the tapes.  

During the case study, the annotation of the tapes 

has been performed by 6 people, most of which had no 

background in Artificial Intelligence. Nevertheless, 

they experienced no problems in working with the 

formal ontology. The formalisation of the dynamic 

properties in TTL has been performed by people with a 

background in Artificial Intelligence, in close 

collaboration with domain experts. 

Concerning related work: we found two papers that 

also present dedicated tools (other than statistical tools) 

for automated support in behavioural research [9, 10]. 

These papers describe a framework that provides 

support in annotating video material and analysing 

behavioural data. The current paper elaborates upon 

these approaches by extending them with a tool to 

automatically verify complex behaviours in terms of 

basic behaviours. 
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